Lecture 7: Transformations Math

Review of Last Time

- Transformations
- Hierarchies, Chains, Trees, DAGs, ...
- Scene-Graph APIs (SVG)

Today

- Transformations as Functions
- Coordinate Systems as Matrices
- Linear Algebra Review
- Transformations as Linear Algebra
- Homogeneous Coordinates

After Today

- Transformation Math
- Curves
- 3D

What does a transformation do to points?

Transformations are functions that apply to points

Y'
$$x', y'$$
 $f(x) = x, y$

Point (position) goes in

Point (position) comes out

Changes coordinate systems:

- going in (local, original coordinates)
- going out (less-local, new coordinates)

What do transformations do to points?

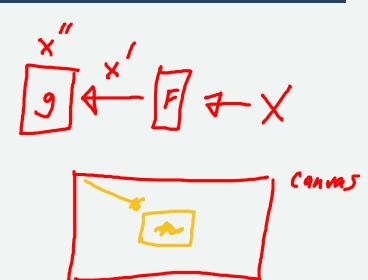
Transformations are functions that apply to points

$$h\left(\underbrace{g\left(\underbrace{f(\mathbf{x})}^{\mathsf{X}}\right)}\right)^{h}$$

We can combine the functions (composition):

$$(h \circ g \circ f)(\mathbf{x})$$

What happens to coordinate systems?



What is a Coordinate System?

Three things:

7,10

origin

- 1. origin (where is 0,0)
- 2. x "step"
- 3. y "step"

A piece of "graph paper" that tells us how to interpret coordinates.

The axes do not have to be orthogonal.

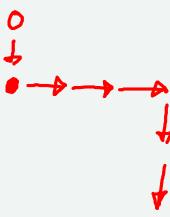
Linear combinations

Combine:

3, 2

- origin
- x steps
- y steps

Interpeted in the "current coordinate system"



Can store these in a Matrix

What is an x step

What is a y step

Where does the origin go (gets added no matter what)

Math you need to know...

Linear algebra in a few minutes (not really)

Just the parts we'll use

Quickly today... practice later

Why?

Transformations are conveniently expressed as matrices

Vectors and Points (and Tuples)

Both are "arrays"

A **Point** is a place

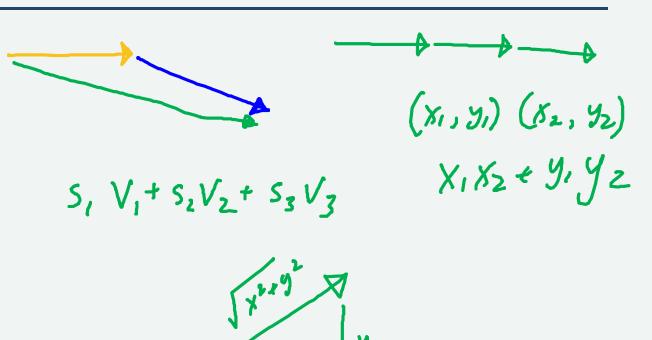
A **Vector** is a movement

A **Tuple** is a list (of numbers)

A point is the interpretation of a vector in a coordinate system

Vectors (and points)

- addition
- multiply by scalar
- linear combination
- norms / magnitude
- dot product
- row vectors vs. column vectors



Row Vectors vs. Column Vectors

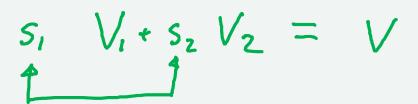
$$egin{bmatrix}1 & 2 & 3 & 4\end{bmatrix} egin{bmatrix}2 & 3 & 4\end{bmatrix}$$

They are **matrices** of different shapes
They have the same content (4 numbers)

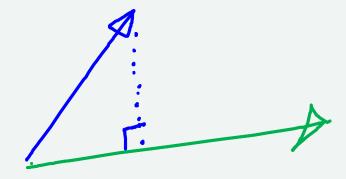
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

more vector stuff

- vector spaces
- projection

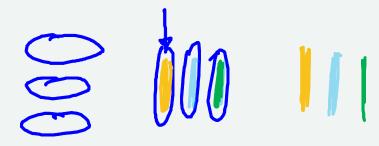


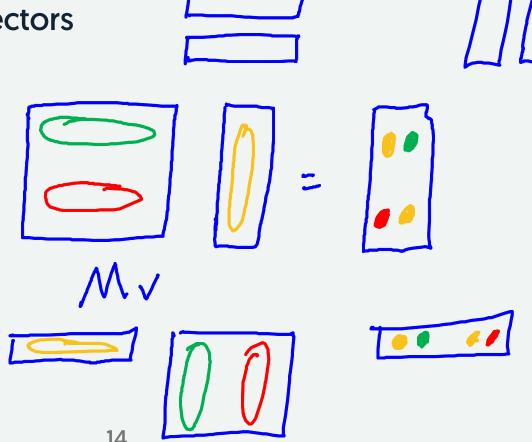
- and some things for 3D (and higher)
 - cross product



Matrices

- matrix as a set of row vectors
- matrix as a set of column vectors
- matrix * vector
 - o right multiply
 - left multiply
- matrix * matrix





Matrix Transpose

Rows become columns (or columns become rows)

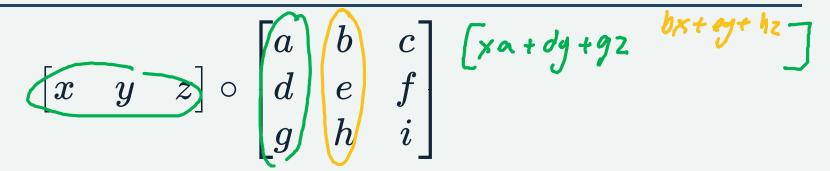
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$$

$$egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}^T$$

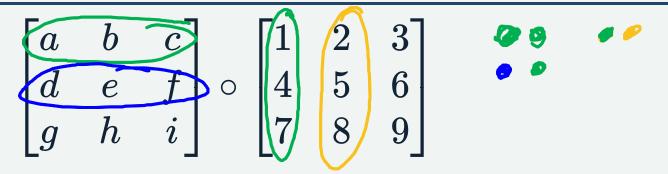
(right) Multiply Matrix by Vector

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \circ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \end{bmatrix}$$

(left) Multiply Matrix by Vector



Matrix multiply



Matrix Properties

- orthogonality
- orthonormality
- determinants
- inverses
- full-rank vs. rank-deficient

vector orthogonal

What does this have to do with Transformations?

- 1. Coordinate systems are matrices
 - so changes in systems are matrices as well
- 2. The most important transformations are linear operations
 - o so focus on them

Linear Transformations

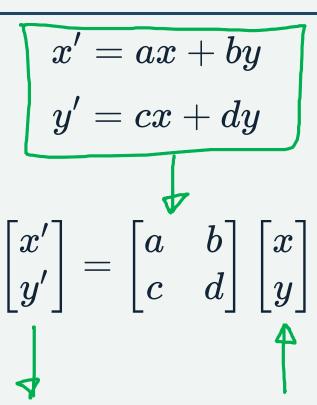
Linear combinations of the inputs x' = ax + by y' = cx + dy

Why do we care?

- Most of what we did has this form
 - o rotate, scale, skew and combinations
- Good for analysis
- Easy to implement
- Guaranteed properties (more later)
- Allows us to use matrices

Change in notation

rewrite as...



Matrix Notation

$$\mathbf{x'} = \mathbf{A} \mathbf{\underline{x}}$$

Right multiply convention

Vectors
$$\mathbf{x} = [x,y]^T$$
 and $\mathbf{x'} = [x',y']^T$ Matrix $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Warning: Right Multiply

Many old books prefer left multiply Some APIs are left multiply

Most (modern) descriptions prefer right multiply

Transformation as a Linear Operator

$$x' = f(x)$$

$$x' = Fx$$

Composition

$$\mathbf{x'} = h(g(\underline{f(\mathbf{x})}))$$

$$\mathbf{x'} = (h \circ g \circ f)(\mathbf{x})$$

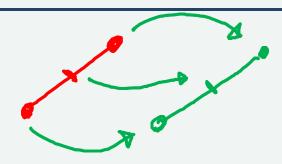
Composition is Matrix Multiply

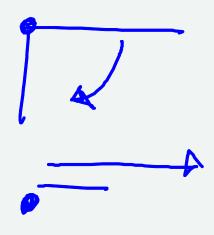
$$\mathbf{x'} = h(g(f(\mathbf{x})))$$
 $\mathbf{x'} = \mathbf{H} \mathbf{G} \mathbf{F} \mathbf{x}$
 $\mathbf{x'} = (\mathbf{H} \mathbf{G} \mathbf{F}) \mathbf{x}$

Properties of Linear Transformations

- Composition by Matrix Multiply
- Lines remain lines
- Ratios are preserved
- Set is closed under composition

Zero is preserved





What about Translation?

Translation in 2D is not a linear operation in 2D

But, translation is important!

Affine Transformations

Linear transformation plus a translation

Change of center

$$x'=a\ x+b\ y+t_x$$
 $y'=c\ x+d\ y+t_y$

or

$$\mathbf{x'} = \mathbf{A} \mathbf{x} + \mathbf{t}$$

Affine transformations

How do we compose them?

$$f(\mathbf{x}) = \mathbf{F}\mathbf{x} + \mathbf{t}$$

$$g(\mathbf{x}) = \mathbf{G}\mathbf{x} + \mathbf{u}$$

$$g(\mathbf{f}(\mathbf{x})) = g(\mathbf{F}\mathbf{x} + \mathbf{t}) = \mathbf{G}\mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{t} + \mathbf{u}$$

Encoding Transforms in Matrices

Affine transforms (in nD) are not linear (in nD)

20

So work in higher dimensions...

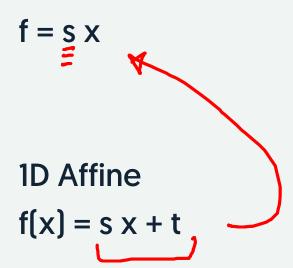
Affine transforms (in nD) are linear (in n+1 D) in homogeneous coordinates

20

31)

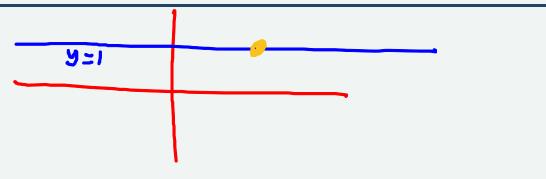
1D Example

1D Linear



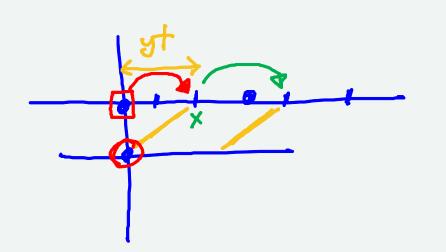
Place the 1D space in 2D

let the "1D space" be y=1



Our 1D "points" x are now [x,1] in 2D

Translation in 1D is Shear in 2D



$$x' = x + t$$
 $\begin{bmatrix} x' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} x + t \\ 1 \end{bmatrix}$

Homogeneous Coordinates

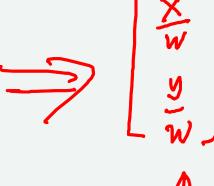
Embed an *n* dimensional space in an *n+1* dimensional space

We call the extra dimension w

X y w=1

Project back to the original space

Divide by w



What does this matrix do (1)

ÿ	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c c} 0 & 1 \\ 1 & 1 \\ 0 & 1 \end{array} $	х у = 1	×+/ y+/ /	⇒	×+1 9+1
---	---	--	---------------	-----------------	----------	------------

What does this matrix do (2)

What does this matrix do (3)

 $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 2x+l & 2x+l \\ 2y+l & 2y+l \\ 1 \end{bmatrix}$

Is the bottom row always [0,0,1]?

Is walways 1?

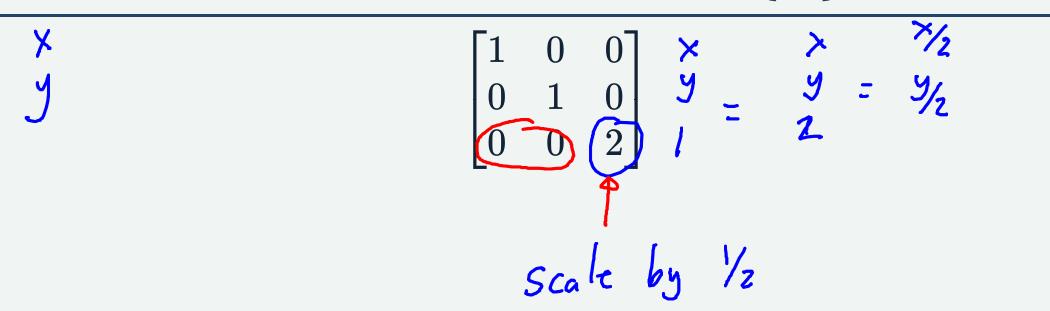
Is the bottom row always [0,0,1]?

If we limit ourselves to affine, we don't *need* anything else

$$\operatorname{canvasMatrix} = egin{bmatrix} a & c & e \ b & d & f \ \hline 0 & 0 & 1 \end{bmatrix}$$

Note the order

What does this matrix do? (4)



What does this matrix do? (5)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} x & x & x \\ y & y \\$$

Better in the book...

The actual matrices for your favorite transformations

Non-Affine Transformations

Projective Transformations

Useful in 2D (for computer vision)
Useful in 3D (just wait)

Focus on affine for now

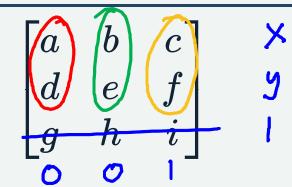
Matrices and Coordinate Systems

Three Columns: where does the...

- (local) X axis go
- (local) y axis go
- (local) origin go

Matrices move from one coordinate system to another

Works in either direction



Implementation in APIs

- Base, window, device ... coordinates
 - Canvas Coordinates
- Current coordinate system
 - Matrix (map to "Base")
- Transformation commands multiply transform (on the right)
- Save = copy the current matrix (push onto stack)
- Restore = return to previous matrix (pop off of stack)

_ Start W/ I