
Lecture 17
Meshes and
Other Stuff

1

Last Time
Rotations

Meshes

Today
Stuff we didn't get to last time

How we deal with colors

How this works in THREE

2

Meshes

In Computer Graphics...

A Mesh is a collection of (connected) triangles

In THREE...

A Mesh is a class that represents a geometric object

It has a BufferGeometry - which is the collection of triangles

It has other stuff it needs to be an Object3D

It has a Material 3

BufferGeometry
Store a collection of triangles

A list of vertices, each vertex has attributes

Connectivity (how the vertices are connected)

Data stored in blocks of memory

BufferAttributes - data with fixed layout

each attached to some "name"

4

Whatever attributes the material will
want/need

const geom = new T.BufferGeometry();

const mem = new Float32Array([/* 4 verts * 3 vals/vert = 12 numbers*/]);
const buf = new T.BufferAttribute(mem,3);
geom.setAttribute("position",buf);

const cmem = new Float32Array([/* 12 numbers */]);
geom.setAttribute("color", new T.BufferAttribute(cmem,3));

const nmem = ... /** set up array of normals */;
geom.setAttribute("normal", new T.BufferAttribute(nmem,3));

// and so on...
5

Triangles from vertices
1. Triangle soup

(v0,v1,v2), (v3, v4, v5), ...

2. Indexed

setIndex - takes a list of vertex numbers (integers)

technically its a buffer (3 verts/triangle, 1 integer per vertex)

6

A Bit of THREE History
1. Geometry - flexible, JavaScript data structures, easy to use

2. BufferGeometry - efficient, maps to how the hardware works

Two versions of everything

SphereGeometry and SphereBufferGeometry

Need to convert Geometry to BufferGeometry

Geometry was deprecated

7

What does this mean for class?
I am trying to get rid of references to Geometry

sometimes things sneak in

8

Back to Meshes...
How do we deal with colors?

1. Colors for the Object (in its Material)

2. Colors for each vertex (if the Material knows about them)

3. Texture colors (coming soon)

Note: Face (triangle) colors aren't on this list! (deprecated)

If you want to color a triangle you need to color its vertices

vertex splitting

9

What colors do things appear?
Albedo - the color of the surface

the color the surface reflects

Color of the object, color of the light - combine

componentwise multiplication

highlights change the color

or surface has separate specular color

10

Aside... Colors in THREE
Everything is class Color

Internally...

it stores RGB

Externally

get / set any way you like

.setRGB (three numbers 0-1), .setStyle (CSS string)

11

Vertex Colors

let material =
 new T.MeshStandardMaterial({vertexColors:T.VertexColors});

12

Barycentric Color Interpolation

13

Barycentric Interpolation
Barycentric interpolation (over a triangle)

where

Gives a coordinate system

for the triangle ()

for the plane

14

Interpolating Colors
(and other Vertex Properties)
Barycentric interpolation

so...

15

More about Normals

16

Triangles (should) have an outward
facing normal vector
We can compute this by the cross product

if the vertices are ordered correctly

Why Specify Normals?

specify outward direction if it isn't obvious

fake normal directions (pretend a triangle is something else)

17

Outward Normals?
Assumes there is an inside and outside

front and back of a triangle

By default, THREE only draws the front of a triangle

need to tell the materials otherwise

18

Three's Compute Normals
compute normals averages the triangles around the vertex

19

Uses of Normals

1. Backface Culling

THREE.js does backface culling by default

use side: THREE.DoubleSide with your materials for planes

warning: doesn't use normals - uses triangle winding direction

2. Lighting

20

Transforming Normals
If we transform the points of a triangle what happens to its normal?

It is a different transformation!

only the 3x3 matrix part (normals are vectors, translations don't matter)

adjoint of the 3x3 part of the transform

The adjoint is the inverse transpose

For a rotation, the inverse transpose is the matrix itself

this is only true for rotations!

21

Mesh Summary
Good Meshes

avoid cracks and T-Junctions

avoid bad triangles

consistent normals

Data Structures for Efficient Sharing

Vertex Properties / Vertex Splitting

Basic Data Structures

Buffers, AttributeBuffers and BufferGeometry

Normals
22

Using Normals for Lighting
Since we skipped some details

Diffuse Specular

23

Historic Models
Used in graphics for decades

First in the 1970s - balance efficiency and quality

Built into hardware in the 1980s

Standard in systems in the 1990s-2000s

Now with GPUs we can do better

Things still built on these models (understanding them is good)

24

Diffuse Lighting

Lambertian Materials

scatters light in all directions

doesn't matter what direction

you look from

25

Diffuse Reflection

where:

 = amount of diffuse reflection

 - unit surface normal

 - unit vector to light source

26

using this...

where

 - unit surface normal

 - unit vector to light source

 - color/intensity of light

 - color of the material (diffuse reflectance)

27

looking at a sphere...
why a sphere is a good "test probe"

28

Shiny Things
We are reflecting the lights (for now)

Specular reflection

29

A Perfect Mirror
Light direction and eye position matter

The eye needs to be in the exact correct position

 (eye vector) and (reflection vector)

30

A Realistic (Imperfect) Mirror

Phong model - it's a hack!

Graduate fall off as we get away from the optimal direction

keep 0

31

Phong Model
Raise to the "power" of "shininess" (phong exponent)

where

 is the eye vector

 is the reflection vector

 is the "shininess" (material property), phone exponent

 is the amount of specular reflection

Shinier = more like a perfect mirror

32

An Alternate Way to Compute

where

 is the normal vector

 is the half-way vector (between and)

 is the "shininess" (material property), phone exponent

 is the amount of specular reflection

33

Using This

where

 - unit surface normal

 - unit vector to light source

 - color/intensity of light

 - color of the material (specular reflectance)

 - shininess of the material

34

Demo

35

How to make things look better
1. Better local lighting models (and materials)

2. Better lighting effects (global transport)

reflections (the world is a light source)

shadows

3. Better colors on the objects

Implementing #2 is hard... so we use hacks based on #3

36

Next up...

Textures
1. How to get more than 3 colors on a triangle

2. How this works

3. How to make this machinery do other things

fake surface complexity (non-smooth objects)

fake reflections

fake shadows

37

The Texture "Lectures"
(last year's videos)

Workbook 8 (Lect 17)

17.A - "Review" (really overview)

17.B - Texturing Basics

17.C - Texturing in THREE

17.D - How Texturing Works

Workbook 9 (Lect 18)

18.A - (none - became 17A)

18.B - Fake Normals (Bump Maps)

18.C - Other tricks

18.D - Environment maps

18.E - Shadow maps

38

