Lecture 17
Meshes and
Other Stuff

Last Time

e Rotations

e Meshes

Today

o Stuff we didn't get to last time
e How we deal with colors

e How this works in THREE

Meshes

In Computer Graphics...

A Mesh is a collection of (connected) triangles

In THREE...

A Mesh is a class that represents a geometric object

e |t has a BufferGeometry - which is the collection of triangles
e |t has other stuff it needs to be an Object3D

e |t hasa Material 3

BufferGeometry

Store a collection of triangles

o A list of vertices, each vertex has attributes

e Connectivity (how the vertices are connected]
Data stored in blocks of memory

e BufferAttributes - data with fixed layout

e each attached to some "name”

Whatever attributes the material will
want/need

const geom = new T.BufferGeometry();

const mem = new Float32Array([/* 4 verts * 3 vals/vert = 12 numbers*/]);
const buf new T.BufferAttribute(mem,3);
geom.setAttribute("position",buf);

const cmem = new Float32Array([/* 12 numbers */]);
geom.setAttribute("color”, new T.BufferAttribute(cmem,3));

const nmem = ... /** set up array of normals */;
geom.setAttribute("normal", new T.BufferAttribute(nmem,3));

// and so on... 5

Triangles from vertices

1. Triangle soup
(vO,v1,v2), (v3, v4, v5), ...

2. Indexed
setIndex - takes a list of vertex numbers (integers)
technically its a buffer (3 verts/triangle, 1integer per vertex]

A Bit of THREE History

1. Geometry - flexible, JavaScript data structures, easy to use

2. BufferGeometry - efficient, maps to how the hardware works

Two versions of everything
e SphereGeometry and SphereBufferGeometry

Need to convert Geometry tOo BufferGeometry

Geometry Was deprecated

What does this mean for class?

| am trying to get rid of references to Geometry

e sometimes things sneak in

Back to Meshes...

How do we deal with colors?

1. Colors for the Object (in its Material)
2. Colors for each vertex (if the Material knows about them)

3. Texture colors (coming soon]

Note: Face (triangle) colors aren't on this list! (deprecated)
If you want to color a triangle you need to color its vertices

e vertex splitting

What colors do things appear?

Albedo - the color of the surface

e the color the surface reflects

Color of the object, color of the light - combine

e componentwise multiplication

¢ highlights change the color
o or surface has separate specular color

10

Aside... Colors in THREE

Everything is class Color
Internally...
e it stores RGB

Externally

e get / set any way you like

e .setRGB ([three numbers 0-1), .setStyle (CSS string]

11

Vertex Colors

let material =
new T.MeshStandardMaterial({vertexColors:T.VertexColors});

12

Barycentric Color Interpolation

13

Barycentric Interpolation

Barycentric interpolation (over a triangle)
p=aA+ 5B ++C
wherea+ B8+ v=1

Gives a coordinate system

e for the triangle (o, 8,7 € 0 — 1)

e for the plane

14

Interpolating Colors
(and other Vertex Properties)

Barycentric interpolation
P = aApos + BBpos + ")’Cpos

SO...
color = aAcolor -+ 5Bcolor + ’)’Ccolor

15

More about Normals

16

Triangles [should) have an outward
facing normal vector

We can compute this by the cross product
e if the vertices are ordered correctly
Why Specify Normals?

e specify outward direction if it isn't obvious

o fake normal directions (pretend a triangle is something else]

17

Outward Normals?

Assumes there is an inside and outside
e front and back of a triangle
By default, THREE only draws the front of a triangle

e need to tell the materials otherwise

18

Three's Compute Normals

e compute normals averages the triangles around the vertex

19

Uses of Normals

1. Backface Culling

THREE.js does backface culling by default
use side: THREE.DoubleSide with your materials for planes

warning: doesn't use normals - uses triangle winding direction

2. Lighting

20

Transforming Normals

If we transform the points of a triangle what happens to its normal?
It is a different transformation!

e only the 3x3 matrix part (normals are vectors, translations don't matter]

e adjoint of the 3x3 part of the transform
The adjoint is the inverse transpose
For a rotation, the inverse transpose is the matrix itself

e this is only true for rotations!

21

Mesh Summary

e Good Meshes
o avoid cracks and T-Junctions

o avoid bad triangles
o consistent normals
e Data Structures for Efficient Sharing
e Vertex Properties / Vertex Splitting
e Basic Data Structures
e Buffers, AttributeBuffers and BufferGeometry

e Normals
22

Using Normails for Lighting

Since we skipped some details

Diffuse Specular

Historic Models

Used in graphics for decades

First in the 1970s - balance efficiency and quality
Built into hardware in the 1980s
Standard in systems in the 1990s-2000s

Now with GPUs we can do better
Things still built on these models (understanding them is good]

24

Diffuse Lighting

Lambertian Materials

e scatters light in all directions

o doesn't matter what direction
you look from

25

Diffuse Reflection

T diffuse — n-l
where:

e 7aiffuse = @amount of diffuse reflection

A

- unit surface normal

e 1- unit vector to light source

26

using this...

color = (fl . i) Clight Cd

where

A

e 1 - unit surface normal
e 1- unit vector to light source
* Clight - color/intensity of light

e c4 - color of the material (diffuse reflectance)

27

looking at a sphere...

why a sphere is a good "test probe”

Shiny Things

We are reflecting the lights (for now)

Specular reflection

29

A Perfect Mirror

e Light direction and eye position matter
e The eye needs to be in the exact correct position

e e (eye vector] and r (reflection vector)

30

A Realistic (Imperfect) Mirror

Phong model - it's a hack!

Graduate fall off as we get away from the optimal direction
e-r
keep >0

31

Phong Model

Raise to the "power" of "shininess" ([phong exponent]

"specular = (€ - T)P
where
e eisthe eye vector
e I is the reflection vector
e pis the "shininess" (material property), phone exponent

* Tspecular 1S the amount of specular reflection

Shinier = more like a perfect mirror
32

An Alternate Way to Compute

Pspecular = (R - h)P
where
e 1 is the normal vector
o fl is the half-way vector (between i and e)

e pis the "shininess" (material property), phone exponent

* Tspecular 1S the amount of specular reflection

33

Using This

color = (A-h)? Ciignt Cs

where

A

e 1 - unit surface normal

e 1- unit vector to light source

* Clight - color/intensity of light

e Cg - color of the material (specular reflectance)

e p - shininess of the material

34

Demo

How to make things look better

1. Better local lighting models (and materials])

2. Better lighting effects (global transport)
o reflections (the world is a light source]

o shadows

3. Better colors on the objects

Implementing #2 is hard... so we use hacks based on #3

36

Next up...

Textures

1. How to get more than 3 colors on a triangle
2. How this works

3. How to make this machinery do other things
o fake surface complexity (non-smooth objects]

o fake reflections

o fake shadows

37

The Texture "Lectures”

(last year's videos])

Workbook 8 (Lect 17) Workbook 9 (Lect 18)

17.A - "Review" (really overview) 18.A - (none - became 17A)

17.B - Texturing Basics 18.B - Fake Normals (Bump Maps)]
17.C - Texturing in THREE 18.C - Other tricks

17.D - How Texturing Works 18.D - Environment maps

18.E - Shadow maps

38

