Lecture 24 Shader Topics A - Noise

The Model In Review

Each vertex is independent

Each fragment is independent

We compute each thing separately

• it's OK, parallel so it's fast!

What about randomness?

Regular patterns look too boring

We don't want the patterns to be obvious...

"Controlled Randomness"

- no randomness? boring
- totally random? boring

• structure + controlled randomness? Good!

Purely Random (each pixel)

White Noise 256x256 (1-channel)

Blank Slide

Historic Examples

Ken Perlin, 1985

He worked on "Tron"

⊖ SIGGRAPH '85

Spotted Donut

Bumpy Donut

Stucco Donut

Disgusting Donut

Bozo's Donut

Wrinkled Donut

Wood

Wood

Simple Stuff Becomes Fancy

We can't really use randomness

- Each frame independent
 - random would cause it to change each time
- Each fragment independent
 - no way to have structure between fragments

Noise

- 1. Psuedo-random
 - $\circ\,$ pattern too complex to see
 - $\circ\,$ but still is controlled / deterministic
- 2. Structured
 - control properties that we care about

Noise - A Simple Method

Start with a 1D pattern (since it's simpler than 2D)

color = f(u) (like stripes)

Simple Psuedo-Random

(many better choices)

```
r = fract(sin(u) * 100000.)
```

What does this look like?

A problem

Shader Test Simple Sin Noise (U direction only)

What's happening?

Structure: change slowly

Sample (points along line)

Aliasing - but adds to randomness

Using Simple Randomness

40 points

100 points

Interpolate to make smooth

Shader Test Simple Sin Noise (U direction only)

In 2D

White Noise 256x256 (1-channel)

Note: this is a better "random function"

50x50 grid

10x10 grid

25x25 grid

You can do a lot better...

- Better Psuedo-random functions
- Efficient in multi-dimensions (2D, 3D)
- Tileable
- Better interpolation
- Multiple frequencies

Perlin Noise

The classic noise function

- newer variants are more efficient on GPUs
- even better psuedo-randomness
 - noise controlled psuedo-randomness
 - Perlin noise
 - coherence at different frequencies
 - demo (1D)
 - demo (2D)

Perlin Noise in 1D

Perlin Noise		
		1
	26	

Perlin Noise in 2D

Perlin Noise in 2D - High Frequency

Multi-Frequency: Low + High

How do you use this?

- Find an implementation on the web
- Mix different frequencies to get desired effects
- Add noise to make things less "perfect"
- It's an art

By Stevo-88 - self-made, used Adobe Photoshop for Perlin noise creation and Terragen for rendering., Public Domain, https://commons.wikimedia.org/w/index.php?curid=2208011

By Simon Strandgaard from Kastrup, Danmark - pink/red liquid using perlin noise + bump + coloring, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=76348609